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‡ GMPIB, Université Paris VII, Tour 24-14, 5e étage, case 7021, 75251 Paris, France
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Abstract. We examine a family of discrete second-order systems which are integrable through
reduction to a linear system. These systems were previously identified using the singularity
confinement criterion. Here we analyse them using the more stringent criterion of nonexponential
growth of the degrees of the iterates. We show that the linearizable mappings are characterized by
a very special degree growth. The ones linearizable by reduction to projective systems exhibit zero
growth, i.e. they behave like linear systems, while the remaining ones (derivatives of Riccati and
Gambier mapping) lead to linear growth. This feature may well serve as a detector of integrability
through linearization.

Integrability of discrete systems is a concept that can be understood on the basis of our
experience on integrable continuous systems. The progress accomplished in the domain of
discrete systems during this last decade has made possible the identification of the possible
types of integrability. The parallel with continuous systems is almost perfect. Three main
types of integrable discrete systems seem to exist [1]:

(a) Systems which possess a sufficient number of constants of motion. The QRT family
of mappings [2] is a nice example of such a system.

(b) Systems which can be reduced to linear mappings. They will be examined in detail
in this letter. Linearizable systems are of particular interest in mathematical physics. In the
continuous case, the reduction of a system to a linear equation means that the solutions can
be expressed in terms of special functions, usually, in the case of second-order differential
equations, some function of the hypergeometric family. In the discrete case, we expect the
discrete analogues of the special functions to play a major role.

(c) Systems which can be obtained as the compatibility condition for some linear system,
i.e. systems that possess a Lax pair. Nice examples of such systems are the discrete Painlevé
equations [3]. Given the Lax pair one can reduce the integration of the nonlinear mapping to
the solution of an isomonodromy problem.

It is clear that the integration of a given integrable discrete system may proceed along
any of the lines sketched above. One can, for example, perform one first integration using a
constant of motion, whereupon the system becomes linearizable and so on.

The very existence of integrable mappings (and their relative rarity) made their detection
particularly interesting. Integrability detectors must, of course, be based on the properties
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which are characteristic of integrability. In this spirit, we have proposed the singularity
confinement property [4] based on the observation that a singularity spontaneously appearing
in an integrable mapping disappears after some iterations: it is ‘confined’ in the sense that it
does not propagate ad infinitum. The singularity confinement criterion is a necessary one for
integrability but, as we have already remarked in [1], it is not sufficient. This was explained in
ample details by Hietarinta and Viallet [5], who have proposed the notion of algebraic entropy
as a stronger criterion which could well be sufficient. This criterion is based on the ideas
of Arnold [6] and Veselov [7] on the growth of the degrees of the iterates of some initial
data under the action of the mapping. At this point the notion of the ‘degree of the iterate’
appears a bit vague. It will be more properly introduced in the following paragraphs through
the analysis of specific cases. One point, however, is immediately clear. The whole low-
growth approach is applicable only to rational mappings, or mappings that can be transformed
into rational ones. This is not a necessary restriction for the singularity confinement approach,
although, to be fair, we do not know of any application of singularity confinement for mappings
which are not rational. The main argument, based on the study of degree growth, is that
a generic, nonintegrable mapping has an exponential degree growth, while integrability is
associated with low growth, typically polynomial. Although the degree itself is not invariant
under coordinate changes, the type of growth, as pointed out by Bellon and Viallet [8], is
invariant. The authors of [5] and [8] have introduced the notion of algebraic entropy defined
as E = limn→∞(log dn)/n, where dn is the degree of the nth iterate. Generic, nonintegrable
mappings have nonzero algebraic entropy. The conjecture is that integrability, associated with
polynomial growth, leads to zero algebraic entropy. In [9] we have examined the results on
discrete Painlevé equations based on the singularity confinement criterion in the light of the
low-growth approach. Our main finding was that singularity confinement is sufficient in order
to deautonomize a given integrable autonomous mapping. This result led to the proposal of a
dual approach for the study of discrete integrability based on the successive applications on
the singularity confinement and low-growth criteria, the latter being implemented only after
the first is used to simplify the problem down to tractable proportions.

The aim of this letter is to examine this particular class of mappings which are linearizable
and study their growth properties. Most of these systems were obtained using the singularity
confinement criterion, and thus a study of the growth of the degree of the iterates would provide
interesting complementary information. Moreover, as we will show, the linearizable systems
do possess particular growth properties which set them apart from the other integrable discrete
systems.

The first mapping we are going to treat is a two-point mapping of the form xn+1 = f (xn, n)

where f is some rational function of xn with coefficients that depend freely on n. Let us point
out that, in what follows, aIl the coefficients that appear are assumed to be free functions of
n (unless otherwise stated). Thus the majority of the systems we study are nonautonomous.
In [1] we have shown that, for all f of the form

∑
i

αi
(xn+βi)νi

, the singularity confinement
requirement is satisfied. However, all those mappings cannot be integrable: the discrete
Riccati, xn+1 = λ + α

xn+β , is the only expected integrable one. Our argument in [1], for the
rejection of these confining but nonintegrable cases, was based on the proliferation of the
preimages of a given point. If we solve the mapping for xn in terms of xn+1 we do not find a
uniquely defined xn and, iterating, the number of xn−k grows exponentially. In what follows
we shall analyse this two-point mapping in the light of the algebraic entropy approach. We
start from the simplest case which we expect to be nonintegrable:

xn+1 = λ +
α

xn + β
+

γ

xn + δ
. (1)

The initial condition we are going to iterate is x0 = p/q and the degree we calculate is the
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homogeneous degree inp and q of the numerator (or the denominator) of the iterate. We readily
obtain the following degree sequence: dn = 1, 2, 4, 8, 16, . . . , i.e. dn = 2n. Thus the algebraic
entropy of the mapping is log(2) > 0, an indication that the mapping cannot be integrable. In
the present case it was quite easy to guess an analytical expression for the degree. What we
do, in general, in order to obtain a closed-form expression for the degrees of the iterates, is
to compute a sufficient number of them. Then we establish heuristically an expression of the
degree, compute the next few ones and check that they agree with the analytical expression
prediction. Now we ask how one can curb the growth and make it nonexponential. It turns
out that the only possibilities are αγ = 0 or β = δ. In either case mapping (1) becomes
a homography. The degree in this case is simply dn = 1 for all n. This is an interesting
result, clearly due to the fact that the homographic mapping is linearizable through a simple
Cole–Hopf transformation.

The second mapping we shall examine is one due to Bellon and collaborators [10]:

xn+1 = xn + yn − 2xny2
n

yn(xn − yn)

yn+1 = xn + yn − 2x2
nyn

xn(yn − xn)
.

(2)

The degree growth in this case is studied, starting from x0 = r , y0 = p/q, and again we
calculate the homogeneous degree of the iterate in p and q, i.e. we set the degree of r to zero.
(Other choices could have been possible but the conclusion would not depend on these details.)
We obtain the degrees dxn = 0, 2, 2, 4, 4, 6, 6, . . . and dyn = 1, 1, 3, 3, 5, 5, . . . , i.e. a linear
degree-growth. This is in perfect agreement with the integrable character of the mapping. As
was shown in [11] it does satisfy the unique preimage requirement and possesses a constant
of motion k = 1−xnyn

yn−xn , the use of which reduces it to a homographic mapping for xn or yn.
The third mapping we are going to study is the one proposed in [1]:

xn+1 = xn(xn − yn − a)

x2
n − yn

yn+1 = (xn − yn)(xn − yn − a)

x2
n − yn

(3)

where a was taken constant. We start by assuming that a is an arbitrary function of
n and compute the growth of the degree. We find dxn = 0, 1, 2, 3, 4, 5, 6, 7, 8, . . . and
dyn = 1, 2, 3, 4, 5, 6, 7, 8, 9, . . . , i.e. again a linear growth. This is an indication that (3)
is integrable for arbitrary an, and indeed it is. Dividing the two equations we obtain
yn+1/xn+1 = 1 − yn/xn, i.e. yn/xn = 1

2 + k(−1)n, whereupon (3) is reduced to a homographic
mapping for x. Thus in this case the degree-growth has successfully predicted integrability.

A picture starts emerging at this point. While in our study of discrete Painlevé equations
and the QRT mapping we found quadratic growth of the degree of the iterate, linearizable
second-order mappings seem to lead to slower growth. In order to investigate this property in
detail we shall analyse the three-point mapping we have studied in [12, 13] from the point of
view of integrability in general and linearizability in particular. The generic mapping studied
in [13] was one trilinear in xn, xn+1, xn−1. Several cases were considered. Our starting point
is the mapping

xn+1xnxn−1 + βxnxn+1 + ζηxn+1xn−1 + γ xnxn−1 + βγ xn + ηxn−1 + ζxn+1 + 1 = 0. (4)

We start with the initial conditions x0 = r , x1 = p/q and compute the homogeneous
degree in p, q at every n. We find dn = 0, 1, 1, 2, 3, 5, 8, 13, . . . , i.e. a Fibonacci sequence
dn+1 = dn + dn−1, leading to exponential growth of dn with asymptotic ratio 1+

√
5

2 . Thus the
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mapping (4) is not expected to be integrable in general. However, as shown in [13] integrable
subcases do exist. We start by requiring that the degree growth be less rapid and, as a drastic
decrease in the degree, we demand that d3 = 1 instead of 2. We find that this is possible when
either β = ζ = 0, in which case the mapping reduces to

xn+1 = −γ − η

xn
− 1

xnxn−1
(5)

or γ = η = 0, giving a mapping identical to (5) after x → 1/x. In this case the degree is
dn = 1 for n > 0. Equation (5) is the generic linearizable three-point mapping, written in
canonical form. Its linearization can be obtained in terms of a projective system [13], i.e. a
system of three linear equations, a fact which explains the constancy of the degree.

The trilinear three-point mapping also possesses many nongeneric subcases, some of
which are integrable. The first nongeneric case is

xn(γ xn−1 + ε) + (xn+1 + 1)(ηxn−1 + 1) = 0. (6)

The degrees of the iterates of mapping (6) again form a Fibonacci sequence even in the case
ε = 0 or η = 0. The only case that presents a slightly different behaviour is the case γ = 0:

(xn+1 + 1)(ηxn−1 + 1) + εxn = 0. (7)

In the generic case the degree of the iterate behaves like dn = 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9,
12, 16, 21, 28, 37, 49, . . . , satisfying the recursion relation dn+1 = dn−1 + dn−2 leading to an

exponential growth with asymptotic ratio ( 1
2 +

√
23
108 )

1/3 +( 1
2 −

√
23

108 )
1/3. Although the mapping

is generically nonintegrable it does possess integrable subcases. Requiring for example that
d4 = 1 we obtain the constraint ε = η = 1 and the mapping becomes periodic with period 5.
If we require d5 = 1, we obtain εn = −ηn+1(ηn − 1) and ηn+1ηnηn−1 − ηn+1ηn + ηn+1 − 1 = 0,
leading again to a periodic mapping with period 8. In these cases, the degree of the iterates
exhibits, of course, a periodic behaviour. A more interesting result is obtained if we require
d9 < 7. We find that the condition η = 1, with ε an arbitrary constant, leads to a nonexponential
degree growth dn = 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 22, 25, 27, 30, 33,
36, 39, 42, 46, 49, . . . . Although the detailed behaviour of dn is pretty complicated one can
see that the growth is quadratic: we have, for example, d4m+1 = m(m + 1) for m > 0. Thus
this mapping is expected to be integrable, and indeed it is a member of the QRT family. Its
constant of motion is given by

K = yn+1 + yn − ε

(
yn+1

yn
+
yn

yn+1

)
+ ε(ε + 1)

(
1

yn
+

1

yn+1

)
− ε2

ynyn+1

where yk = xk + 1. The second nongeneric case is

γ xnxn−1 + δxn+1xn−1 + εxn + ζxn+1 = 0. (8)

A study of the degree-growth leads always to exponential growth with asymptotic ratio 1+
√

5
2 ,

except when γ = 0, in which case the degrees obey the recurrence dn+1 = dn−1 + dn−2. No
integrable subcases are expected for mapping (8). The last nongeneric case we shall examine
is

γ xnxn−1 + xn+1xn−1 + εxn + ηxn−1 = 0. (9)

Again the degree sequence is a Fibonacci one, except when γ = 0 or η = 0, in which case we
have the recursion dn+1 = dn−1 + dn−2, or when εn = γnηn−2. In the latter case the degree-
growth follows the pattern dn = 0, 1, 1, 2, 2, 3, 3, . . . , i.e. a linear growth. Thus we expect
this case to be integrable. This is precisely what we found in [13]. Assuming η �= 0 we can
scale it to η = 1, and thus ε = γ . The mapping can then be integrated to the homography
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(xn−1 + 1)(xn + 1) = kaxn−1, where k is an integration constant and a is related to γ through
γn = −an+1/an. Thus in this case mapping (9) is a discrete derivative of a homographic
mapping.

This leads us naturally to the consideration of the generic three-point mapping that can
be considered as the discrete derivative of a (discrete) Riccati equation. Let us start from the
general homographic mapping which we can write as

Axnxn+1 + Bxn + Cxn+1 +D = 0 (10)

whereA,B,C,D are linear in some constant quantity κ . In order to take the discrete derivative
we extract the constant κ and rewrite (10) as

κ = αxnxn+1 + βxn + γ xn+1 + δ

εxnxn+1 + ζxn + ηxn+1 + θ
. (11)

Using the fact that κ is a constant, it is now easy to obtain the discrete derivative by
downshifting (11) and subtracting it from (11) above. Instead of examining this most general
case we concentrate on the forms proposed in [14]. They correspond to the reduction of (11)
to the two cases

κ = xn+1 + a +
b

xn
(12)

κ = xn+1(xn + a)

xn + b
. (13)

Next we compute the discrete derivatives of (12) and (13). We find

xn+1 = xn + an−1 − an − bn

xn
+
bn−1

xn−1
(14)

and

xn+1 = xn
xn−1 + an−1

xn + an

xn + bn
xn−1 + bn−1

. (15)

The study of the degree of growth of (14) and (15) can be performed in a straightforward
way. For both mappings we find the sequence dn = 0, 1, 2, 3, 4, 5, 6, . . . , i.e. a linear
growth just as in the cases of mappings (2) and (3) and the integrable subcases of (9). If
we substitute bn−1 by cn−1 in the last term of the rhs of (14) or the denominator of (15) we
find dn = 0, 1, 2, 4, 8, 16, . . . , i.e. dn = 2n for n > 0 unless c = b. Investigating all the
possible ways to curb the growth we find for both (14) and (15) that c = 0 is also a possibility
to bring d3 down to 3. However, a detailed analysis of this case shows that, for c = 0, we have
dn = 0, 1, 2, 3, 5, 8, 13, 21, . . . , i.e. a Fibonacci sequence with slower, but still exponential,
growth (i.e. ratio 1+

√
5

2 instead of 2).
One more family of linearizable discrete systems has been studied in detail in [15] and [16].

They are what we called the Gambier mappings which constitute the discretization of the
continuous Gambier equation [17]. The latter is a system of two Riccati’s in cascade. In the
discrete case the Gambier system is written as two homographic mappings which we write in
canonical form as

yn+1 = anyn + bn
yn + 1

(16a)

xn+1 = xnyn/dn + c2
n

xn + dnyn
. (16b)

Eliminating y we can also write the discrete Gambier system as a single three-point mapping
for x. The study of the degree-growth of (16) is straightforward. We start from x0 = r ,
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y0 = p/q and compute the homogeneous in p, q degree of (16a) and (16b). Since (16a) is a
Riccati its degree does not grow, i.e. we have dyn = 1. Given the structure of (16b) we have
dxn+1 = dxn + dyn and thus dxn = n. What is interesting here is that the Gambier mapping
exhibits a linear degree-growth independently of the precise values of a, b, c, d. The fact that
it can be reduced to Riccati’s in cascade is enough to guarantee its integrability. On the other
hand, if we had asked (as we have done in [15]) for the possibility to express the solution as
an infinite product of matrices, even across singularities, this would have led to constraints on
the parameters (which were given in detail in [16]).

In this letter we have examined a class of integrable discrete systems (mainly three-point
mappings) from the point of view of the degree-growth of the iterates of some initial data.
Our study was motivated from the recent works connecting slow-growth and integrability. Our
present analysis confirms our previous findings based on the singularity confinement necessary
discrete integrability criterion. But what is more important is that a relation between the details
of integrability and the degree-growth seems to emerge. In this letter we have found two main
types of degree-growth: zero and linear growth. Zero growth is associated with systems which
are linearizable through a reduction to a projective system. Linear growth is characteristic of
systems which can be reduced to linear ones, although at the price of some more complicated
transformations, usually through the existence of some constant of motion or, as in the case of
the Gambier mapping, through the solutions of linear equations in cascade. On the other hand,
in our study on discrete Painlevé equations and the QRT mapping we found that quadratic
growth was the rule. These results are, of course, characteristic of three-point (second-order)
mappings and we do not expect the details concerning the precise exponents to carry over to
higher-order mappings. Still, we expect the pattern detected here, namely that linearizable
mappings lead to slower growth than the nonlinearizable integrable ones, to persist. It could
be used for the classification of integrable discrete systems and be a valuable indication as to
the precise method of their integration. We intend to return to this point in some future work.
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